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Abstract
Introduction to the hows and whys of mathematical modeling.

Most of the text is about the details, especially of the COVID-19 disease.
Remarks about the general hows and whys of modeling are set in
boldface.
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Modeling

First, we need to talk about models.

• A model is a structure for thinking about something complex.

• But models are always incomplete and idealized to some extent.
We say they are abstract.

• Models may be purely informative, as in artist’s models. An artist’s model is
often not sitting for a portrait. The purpose of the model is so that the
artist can support the art with a certain amount of realism.

• Models can guide our behavior, often prescriptively (or normatively). That’s
why we talk about “model students.” Teachers want other students to
emulate those models.

• A map (graphic image) is a model.

• In mathematical logic, a model is a map (function).
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There was a model for this painting …

Removed due to copyright concerns. Please use the Google search below to view
a whole page of examples of paintings of people that are not portraits, by Pablo
Picasso.

https://www.google.com/search?q=picasso+woman+images
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Modeling in Policy and Planning Science

• Models may be causal or policy-oriented, that is, they help us to control
some phenomenon.

• In statistics, there are usually two models. One model comes from a scientific
domain, and describes the policy-relevant aspects. The other part is purely
statistical, and uses randomness to describes aspects we cannot control, and
usually cannot even observe.
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Mathematical modeling

• Consider a 3D printer, or any printer—an image is also a model of the thing
it depicts. How does it work? You feed it numbers to tell it where to put
tiny drops of plastic (3D) or ink (2D).

• The image produced by the printer is a physical representation
(model) of the object. The list of numbers the computer sends to
the printer is a quantitative (mathematical) representation of the
object.

• Of course, once we have a quantitative representation, we can abstract
further by using functions to generate the numbers.

• Once we have a functional representation, we can use algebra, calculus, and
even more advanced mathematics to analyze our model (because, of course,
the function is another representation, or model, of whatever we are
studying).
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Causal modeling

• In science, and even in daily life, the most important models are causal
models. They explain behavior we observe in terms of causes and effects.

• If we ask an attractive person to go out with us, and they say no, we can ask
them why to directly acquire a model of their behavior. But if they say yes,
we may imagine they find us attractive too. Imagining is a very dangerous
way to acquire models. Consider: that’s how marriage frauds make money!
– We have no choice but to start with our imaginations. But we

should not rely on such models until we have verified them.

• The point of science is to ask why. E.g., why does a person become sick with
the disease COVID-19? Our model is that the necessary condition is
infection with the virus SARS-CoV-19. Both cause and effect are actually in
the name: “SARS” stands for “severe acute respiratory syndrome” which
tells us about the disease, “CoV” stands for “corona virus,” and “19” for the
year of discovery, 2019.
– Showing cause and effect is why scientists like names like “SARS-CoV-19”

although ordinary people just say “the coronavirus.”
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Modeling COVID-19

Let’s think about an example of building a model.

• What do we know about disease, for example, the flu? It’s pretty much the
same every year nowadays: in the autumn we go to the doctor, get
vaccinated, a few people get sick, a very few get very sick and die, and then
we repeat the following year.

• This is the very simplest model: a constant. What we expect to
happen next time is what happened last time.

• COVID-19 is new (that’s the “novel” in “novel corona virus”). By that
very fact, the idea of a constant model (next year will be the same is
this year) is undermined. Next time (tomorrow, with COVID-19) is not
going to be the same as last time (yesterday, before COVID-19). We see that
in the papers every day: new cases—and new deaths.

• Yet the constant model plays a fundamental part in the political economy of
the pandemic.
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A bad model

• The political argument is that we see that the business shutdown orders had
a big economic effect:
– before the order, most people took a few precautions and then went to

school, work, and play, but
– after the order, many businesses shut, people stayed home, and
– we see a very large negative impact on the economy.
– Therefore, it was a bad idea to shut all the businesses before we were sure

that the virus was spreading explosively.

• This is based on the constant model. Why? Because the standard of
comparison for “very large negative effect” is last period’s GDP (or
employment, etc.).

• The implied assumption is “if we had no shutdown order, the economy would
work the same as last year,” i.e., the constant model.
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Rejecting the bad model

• OK, it’s the constant model. Is that bad? After all, it works for the flu, and
business activity was going on as before.

• The problem is that we know from the experience of Wuhan (China),
Bergamo (Italy), and New York (US) that COVID-19 is different from
the flu. We don’t have any vaccine, a relatively large fraction of the
population gets sick, and relatively many of them get sick enough to die.

• Finally, it had a great effect on the economy even before shutdown orders in
those places, even if you only count economic losses due to sick workers and
shortages from falling production, and the like.

• The constant model is untenable (we can’t defend it) in the case of
COVID-19.

• To estimate the costs (economic and otherwise) of business shutdowns, we
need to evaluate a counterfactual: “What would the level of economic
activity be with COVID-19 but without the shutdown?
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Counterfactuals

• How do we evaluate a counterfactual? You guessed it, I’m sure. We build a
model. We have no choice but to build a model. Working with
counterfactuals always involves models.

• Sometimes we can avoid explicit modeling. If we’re lucky, we have
appropriate data and we use analogical reasoning: this situation is like that
situation, so the outcome this time should be like the outcome that time.
– This is just an alternative description of the constant model.

• Building a model of the effect of COVID-19 on a national economy is hard.
So hard that I don’t know of any professionals willing to publish theirs yet.

• Part of economic modeling must be modeling the disease’s medical effects,
which is not something we can do in Shako, especially not this class.

• But there’s a component of that model that we can at least get started on:
the epidemiology of the virus (i.e., the scientific study of how it spreads). We
decompose the problem and model the parts we can understand.
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Simplest epidemiological model, cont.

We need to keep asking “why?” and what that means for our model.

• Why can’t we use the constant model? We know from the worst-hit cities
that the SARS-CoVID-19 virus has faster than linear growth, which varies
from place to place (and responds to policy) and is estimated to have a
doubling time of 2–7 days.

• Assuming we take no special action, and a doubling time of 2 days (worst
case), starting from one infected person, we get the table on the next slide.

• If one of us is sick today, in a week the whole zemi has gotten sick, in a
month the whole university is infected, in 5 weeks all of Tsukuba, in 7 weeks
all of Kanto, 5 days after that all of Japan, in 9 weeks all of Asia, 2 days
after that the whole world, and 2 days after that … uh, wait …() oops.

• Lesson #1: You can run, but you can’t hide from exponential growth.

• Lesson #2: Exponential growth is a bad model of an epidemic. It predicts
impossible outcomes.
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Table: Doubling Time of 2 Days

day 0 2 4 6 8 10 12 14 16 18 20 22 24
count 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096

day 26 28 30 32 34 36 38
count 8,192 16,384 32,768 65,536 131,072 262,144 524,288

day 40 42 44 46 48 50
count 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216 33,554,432

day 52 54 56 58 60
count 67,108,864 134,217,728 268,435,456 536,870,912 1,073,741,824

day 62 64 66 68
count 2,147,483,648 4,294,967,296 8,589,934,592 17,179,869,184

Table 1: Exponential growth model
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Shifting gears to define a better model

• As we’ll see later, the exponential growth model is not a bad model in the
way that the constant model is. The constant model is just plain bad
because with data, it can only predict the same thing (or an average), and
without data, it predicts anything you can imagine.
– I can imagine 10 million people in Tokyo with viral pneumonia from

COVID and 10,000 ventilators—two weeks later Tokyo would literally be
a ghost town.

– Politicians seem to imagine 5000 people sick with COVID, and plenty of
ventilators for people with asthma (like me) too.

Arguing about our imaginings is useless.

• But to see that exponential growth is a somewhat useful model it’s
helpful to use different mathematics, namely continuous time. Our
calculations were done with discrete time, calculating only for every two
days. What about odd days? Can we say something about hours or minutes?
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Discrete time to continuous time

• A bit of thought will show that after t days, we have 2× 2× · · · × 2 (multiply
by 2, t

2 times), or N = 2
t
2 infected individuals. So if we allow t to be odd

numbers, or fractional numbers, we can still calculate this (with a computer).

• But this is not very helpful. The first change we’re going to make in our
model is to change the doubling time so that we can’t have more sick people
than we have people!

• To express this, the trick is to look at the relationship between the number of
infected individuals and the rate of increase of infected individuals.
– On any day we can count the infected individuals N .
– Two days later we’ll have 2N .
– The rate of increase is 2N −N = N (with the unit of time being 2 days).

We have expressed the rate of increase directly in terms of N .

• In continuous time, we use calculus and write dN
dt = N .

• If we integrate, we get the exponential function N(t) = exp(t) = et.
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Exponential functions

• For our purpose, the exponential function et is defined by the differential
equation dN

dt = N .

• e is an irrational number, approximately 2.718281828459045 according to my
iPhone.

• There are many exponential functions, such as 2
t
2 (and 2t), but et is the

exponential function because the differential equation is so simple.

• In fact, all exponential functions can be expressed as f(t) = Aeαt, and they
all have linear differential equations df

dt = αf(t).

• Although the rate of increase df
dt changes over time, the rate of growth

df/dt
f = α does not.

• Try the exponential function 2
t
2 = e0.346573590279973 t with even numbers t!
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Graph of exponential growth
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Logarithmic-scaled graph of exponential growth
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More exponentials

The generic exponential function is Aeαt. The exponential function et has
A = α = 1. Here are four exponentials with A = 1 or A = 2, and α = 1 or α = 2.
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Now, on split-screen: There’s only one

Can you see the differences?
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Logistic growth

• How is it that exponential growth crashes through the upper limit of
population? One explanation is that it “doesn’t know” that only individuals
who aren’t infected can change to infected.

• One way to generate a better mathematical model is to consider α as the
hazard rate: the chance that an infected person will infect someone they run
into. Since in the exponential model there are N(t) infected individuals
meeting other people, the rate at which infections increase is dN

dt = αN .

• But already infected individuals don’t “get” infected, so the chance that the
individual some infected individual meets is uninfected is N̄−N

N̄
, where N̄ is

the total population (the bar on the top symbolizes “maximum infections”).

• Now the hazard rate for infections is α N̄−N
N̄

= α(1− βN), where β = 1
N̄

, and
the differential equation is dN

dt = α(1− βN)N .

• This modification would be very tedious in discrete time.
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The solution to logistic growth

Compare logistic growth f(t) = et

et+e−t (blue) with exponential growth (red).
(The exponential growth curve is rescaled to match the logistic curve.)
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Policy variables and parameters

• A policy variable is something that the authorities can change to
get a better outcome.
– In a dynamic model like this one, we sometimes distinguish policy

parameters, which are policy variables that do not change over time, from
time-varying policy variables.

• Our hazard rate α is a sort of policy parameter. We talk about “flattening
the curve” by reducing the hazard rate.
– Why “flattening”? Because as a proportion of population, for any α the

logistic curve tends to 1 as t → ∞. We can’t stop that but we can make
the slope smaller.
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Matching model variables to real policies

• But what are the real policies?

• We don’t control the rate of infection directly. Instead we use social
distancing (meeting fewer people per day) and prevention (masks).

• For a more realistic model we can decompose a descriptive
parameter α = αdαm into policy-relevant components αd, the rate of
meeting people, and αm, the leakage rate of masks.
– Note that in this case, we can do all the math with α and substitute the

decomposition later! More realism doesn’t always make the math
harder.

• We could further decompose αm into the effectiveness vs. inhaling (not very
good) and the effectiveness vs. exhaling (important), but that’s not very
useful.
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I am still not happy with logistic growth

• To adapt our model to the policy needs, we ask why do we care so
much about COVID-19? Because some infected individuals get sick and die,
a minor model change (N̄ changes over time).

• That’s the worst case, but infected individuals usually recover.
– When recovered, they may be susceptible (they can get infected again),

decreasing N , or
– When recovered, they may be immune (they cannot get infected again),

decreasing N where it means “infectious individuals” (the second factor
in the right hand side of the differential equation), but not N where it
means “nonsusceptible individuals” (the N in the third factor), or

– they may be partially or temporarily immunne.
Any of these would change the model a lot, making the mathematics harder.
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Interpreting logistic growth

• Can we interpret the logistic growth model realistically for a disease?

• Yes! But it’s not a very intuitive way to think about it. It doesn’t
match the way we think about public health.

• In the discussion of hazard rate, we need to think about why people are
removed from the susceptible population. E.g., with a new virus, it may
make sense to class people who never had it as “susceptible” and those who
have ever had it as “not susceptible”. This is not a good generic model of
disease (e.g., you can catch the flu or a cold many times, you can be immune
to measles), but it logically generates the logistic model.
– Note: The standard for good model is domain-specific: “useful for

public health policy.” “Logically acceptable” isn’t good enough!

• The logistic model may be the best well-founded single equation model,
although it’s not so helpful to predict hospital demand. Sometimes a
simple model gives a simple answer, and we’re satisfied with that.
E.g., the logistic model is sufficient reason to fear a devastating spike in
cases, even though cases and rate of infection are bounded.
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The SIR model

• The SIR model divides the population into three subpopulations (SIR =
Susceptible, Infected, Recovered/Immune). Only the Infected population
requires treatment, and only the Infected population can infect others.

• Then the equations are

dN

dt
(t) = αI(t)(1− N(t)

N̄
)

R(t) = N(t− 14)

I(t) = N(t)−R(t)

S(t) = N̄ −N(t)

• The equation R(t) = N(t− 14) makes this model a delay differential
equation model. The detailed theory of these models is difficult, but in
differential equations, simulations are usually good indicators of
system behavior because the model has a unique solution.
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Compartmental models

• SIR is a compartmental model. Compartmental models are frequently
a good basis for statistical analysis.

• Sometimes our subpopulations are fixed (e.g., male vs. female), sometimes
individuals move among them as in SIR.

• When the compartments are based on age, and individuals move among
them in lockstep, we call the compartments cohorts.
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Variations on the SIR model

• Because with COVID we fear spikes in infections will overwhelm the medical
system, and because we have poor testing data about distribution in the
population, we want more flexible models that can accurately
predict system behavior with different component behavior. Here
“components” are the disease and its transmission.

• In SIR, we abstract from (ignore) the facts that degree of sickness ranges
from “asymptomatic” to “fatal”, that we don’t know recovery confers
immunity, and that the periods of illness and of infectiousness may differ.
– Asymptomatic vs. symptomatic infected individuals are out of scope here,

because we don’t model burdens on the economy.
– If recovered individuals are immediately susceptible to reinfection with

the SARS-Cov-2 virus, we could use the susceptible-infectious-susceptible
(SIS) model, which is even simpler than SIR.

– There is an incubation period between the time they are infected and
when they show symptoms. This leads to the
susceptible-exposed-infectious-recovered (SEIR) model.
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Beyond SIR, cont.

In the case of COVID-19, there are other complications that public health policy
requires we add to the model.

• If we had thorough testing, the test itself would be a symptom for
epidemiological purposes, but the burdens would still differ from sick
individuals.

• We believe that an individual becomes infectious before displaying symptoms
of COVID-19. In general, infectious capacity may vary over time. (Models
with this property were not discussed on Wikipedia.)

• The English Wikipedia article on Compartmental models in epidemiology is
quite good:

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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Still not good enough

• An important phenomenon in pandemics is that the epidemic is not uniform,
it clusters.

• Why do people get infected (and then sick)? Partly it’s an individual
characteristic. We handle that statistically by modeling it with randomness.
We don’t know enough about the pathology (the way the virus infects us),
and it’s good enough for epidemiology.

• In epidemiology, people are infected when they meet others. But meetings
are not uniform, expressible by a single hazard rate. In fact, the probability
of meeting depends on both individuals in an encounter. This requires a
social network model, which generally can’t be solved by algebra or calculus,
a very big change in the model.
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• The SIR model is good enough to give a picture that looks a lot like the
graphs used to demonstrate the “flatten the curve” effect of social distancing.

• Can’t we stop there? Unfortunately not. We know that for individual and
economic reasons, amount of social distancing varies greatly among
individuals. We must look at a social network model to estimate the
flattening effect we can get from a policy (more counterfactuals!)

• We also have experience with multiple “waves” of a disease, both very
regular ones (the annual “flu season”), and single episodes (the 1918
influenza pandemic, where the second wave caused the most deaths).

• In fact, the 1918 pandemic also teaches us that different policies give
different curves, and quite different second and third waves. We need models
to predict those too.

• When do we stop modeling? This is a pragmatic question, and the
answer is “when we run out of time, budget, or motivation.” For example, we
learned a lot about the first SARS virus, but we never developed a vaccine
or an antiviral treatment for SARS-like corona viruses due to lack of
motivation: SARS was defeated quite quickly (as these things go).

June 12, 2020 31 modeling covid 19


