Economic Dynamics ### Stephen Turnbull Department of Policy and Planning Sciences Lecture 5: November 8, 2019 #### Abstract The economics of pure exhaustible resources, basic concepts of dynamic optimization, and examples from the fishery. #### Midterm Examination - Date: **November 15, 2019, 12:15–13:30.** - Past examinations will be made available on the home page, look at "Old News" at the bottom. Will post links in a more convenient place later. - Lecture will be held in 4th period, 13:45-15:00. #### **Network Industries** This section loosely follows Shy, The Economics of Network Industries. - A network industry is one which maintains connections among its clients. - A market can be thought of as such a service in pure form, allowing its members to compare prices and arrange trades. - Most networks are impure, providing connection plus other services. - Transportation and communication services may be used or not, along with the conceptual connection. - A software application's file format may be used by a lone user purely to store information, as well as permitting file sharing among users of the same software. - Any standard, whether "official" or simply popular, has the same effect of creating a network. - Networks create markets. #### Network Externalities vs. IRTS in Production - IRTS in production implies that a single large producer is most efficient, by definition. However, with network externalities in consumption, it is both theoretically possible and seen in practice that several providers share a single network. - A fixed cost with constant marginal cost implies unbounded increasing returns. The model that leads to Metcalfe's law is far less plausible. - However, the marginal benefit to a network externality is unbounded above, while the reduction in cost due to production ITRS is bounded below by marginal cost. - Thus, if network externalities are even slightly increasing in the size of the market, they can be enormous, and may support much larger firms as "minimum efficient size" compared to production IRTS. #### Metcalfe's Law • To the extent that a network merely *provides connections* between users, its value to each user *i* depends on the set of connections available. We simplify to assuming that it is not the particular set, but rather the size of the set that matters: $$U_i = u_i(N), u'_i(N) > 0, i \in N.$$ If u_i is nonlinear, we say network externalities are present. - The simplest estimate of the value of the network assumes - users are symmetric: $u_i(N) = u(N)$ - users do not discriminate: u(N) = u(n), where n = |N| - values are additive: $V = \sum_{i \in N} u(N) = nu(n)$ - individual value is linear: u(n) = vn - Metcalfe's Law is immediate: $$V = vn^2$$. ## A Simple Model with a Network Externality - We assume a potential market of users M, with |M| = m. - The network externality follows Metcalfe's Law: $$V = n(nv - c),$$ where V is the total surplus of the industry, n is the number of users connected to the network, v is the value per connection to each user, and there is a cost of c to stay connected to the network. - Unlike the usual theory of the firm, there is a dramatic difference between c=0 and c>0 cases. - The externality is represented by the coefficient n on v (inside the parentheses). #### The Initial Coordination Problem • Consider the inequality $$u(n) - c = vn - c < 0,$$ which is the condition where a potential user does not want to join the network. • It's easy to solve for n: $$n < \frac{c}{v}$$. - When c > 0 and v > 0 is small enough, there may be sizeable populations n > 0 such that u(n) c < 0, so the market may fail unless at least $\frac{c}{v}$ users can be convinced to join at the beginning. - If the initial size of the network is at least $\frac{c}{v}$, the dynamics of the network are qualitatively similar for c > 0 and c = 0. ### Industry Dynamics with Network Externalities - More interesting than the *fact* that there are increasing returns to size of the market on the demand side is the *effect* of these returns on the dynamics of the industry. - For example, many innovations start with a single inventor, and as others realize that the innovation is useful, it propagates (or diffuses) through the industry (or even the economy as a whole). - But with a *pure network good* (one which only offers value by connecting to others) there may be a *minimum viable scale* below which the cost of production is not balanced by the value, even though a large network might have very high net value to each user. - This means that starting the network requires *coordination* (enough users joining the network at introduction), and therefore the normal market mechanism can fail to support the innovation. ## Diffusion Dynamics for a Network Good - We model the dynamics as a differential equation. The hazard rate for joining the network is proportional to the net value to the new user: $\alpha(vn-c)$. - With m the total population of potential users, multiplying by the nonuser population m-n gives the rate of diffusion: $$\frac{dn}{dt} = \alpha(vn - c)(m - n),$$ which has the solution $$n(t) = \frac{m - \frac{c}{v}}{1 + e^{-\alpha v(m - \frac{c}{v})(t - t_0)}}.$$ • In the special case of c = 0, we can rearrange to get $$\frac{dn}{dt} = (\alpha v)n(m-n),$$ which is the familiar logistic model with solution $$n(t) = \frac{m}{1 - e^{-\alpha mvt}}.$$ ### The Logistic Growth Path The S-shaped logistic growth path is bounded above and below. December 25, 2020 10 network externality dynamics ## Dynamic Competition between Incompatible Networks - We consider the duopoly, but the principle applies to industries with more than two firms. We have a total population of potential users of m. - Let the per user per connection values be $v_1 = v_2 = v$, the cost per connection be $p_1 = p_2 = c$, and the number of users (connections) for the two firms be n_1 and n_2 . - The notations v_i and p_i ("p" for "price") indicate that in a more sophisticated model these might be differentiated or even strategic variables (especially p_i). - Incompatible means that users on one network are not connected to the other. Thus for each user, the value of their network is $u_0 = 0$ if not connected to either, and $u_i(n_i) = v_i n_i p_i$ if connected to network i. ### Adoption Decisions of Users - We suppose that the diffusion of non-users into each network is proportional to net value as in the monopoly case: $\alpha_i(v_i n_i p_i)$. Once again we will assume symmetry: $\alpha_1 = \alpha_2 = \alpha$. - This assumption is more plausible than the assumptions for the "strategic" variables. - We assume no switching cost, and that existing users switch from 2 to 1 according to the difference in net values: $\delta((v_1n_1 p_1) (v_2n_2 p_2))$. - Note this hazard rate may be negative. - If you were wondering why the hazard rates for non-users have the same α , this switching can help justify that assumption. - In a course in economic dynamics, you'd be asked to show when the model with $\alpha_1 = \alpha_2$ and a high δ is equivalent to $\alpha_1 \neq \alpha_2$ and a lower δ . #### The Diffusion Model - Make all symmetry assumptions, and $n_1 > n_2$ at the start of time. - Then we have $$\dot{n}_1 = \alpha(vn_1 - c)(m - n_1 - n_2) + \delta v(n_1 - n_2)n_2$$ $$\dot{n}_2 = \alpha(vn_2 - c)(m - n_1 - n_2) - \delta v(n_1 - n_2)n_2$$ Conceptually there are also terms $\pm \delta v \max\{n_2 - n_1, 0\}n_1$ in each differential equation, but on the assumption $n_1 > n_2$, they are zero. On that assumption, we can omit the max in the equations above. - It is easy to see that $\dot{n}_1 > \dot{n}_2$, and for small enough c, $\dot{n}_1 > 0$. (The last is non-trivial to prove because in the limit non-users and n_2 go to 0.) - Thus $\frac{d}{dt}(n_1 n_2) > 0$. $\frac{d}{dt}(m n_1 n_2) < 0$ if $\dot{n}_2 \ge 0$, so eventually $\dot{n}_2 < 0$. - Even with $\dot{n}_2 < 0$, $|\dot{n}_1| > |\dot{n}_2|$, so $\frac{d}{dt}(m n_1 n_2) < 0$. $n_2 \to 0$ and $n_1 \to m$. - Symmetry implies that the opposite conclusions hold if $n_2 > n_1$, so this model is "tippy": whichever network starts out ahead soon crowds out the other. ### **Dynamic Games** - Mathematical analysis of even the simplest game is quite complex. It's easy to see that if the symmetric model is extended so that each firm can choose price p_i , the firm that starts with greater n_i has a big advantage. - As long as that firm is willing to match $p_i = p_j$, it will win the whole market. - If the monopoly is expected to continue for a long time, firms may even be willing to offer negative prices. - If everything is symmetric, the game is very similar to the "War of Attrition", which is known to have only mixed strategy equilibria. ### Compatible Networks - As mentioned, for many networks an *interconnection standard* can be created. This means that (subject to quality of service considerations for the "foreign" users) the network externality is based on the sum of users of all networks in the "internet." - Large networks don't have a competitive advantage: several networks of different sizes can share the market. - Market structure (number of companies) is more stable. - The value to each user is greater (approximately double in the duopoly) so price increase may be more than enough to compensate the leader for allowing interconnection. - Examples: "The" Internet, protocols such as the "World Wide Web," standards like the "DOM" for web browsers (allows Javascript to work on different browsers) and "ODF" for office automation - Competition on price and service quality ## Standards and "Open Source" - "Open" standards (no royalty to implement) lead to "open source" implementations - "Poor" or hobbyist programmers write their own implementations and contribute them - Business customers trying to avoid "lock-in" may write their own implementations and contribute them when they are not mission-critical or competitive advantage - Open source businesses may implement to support a further value-added product or service