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Today we first look at how mathematical models of dynamic pro-
cesses are expressed in differential and difference equations. Phase
diagrams of GDP per capita in the Solow growth model and of fish
populations in the fishery were used earlier. We now examine how
the formal equations relate to the graphical presentation.
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Discrete dynamic systems

The simplest dynamic models are self-contained, self-driving
discrete systems like the doubling model of an epidemic.
A discrete dynamic system is a sequence of values (scalar or
vector) {yt} defined recursively. (The braces indicate that it is a
sequence of yτ for τ = 0, . . . , t.)
Recursive means there is a functional relationship yt+1 = f({yt})
for t = 0, 1, 2, . . .. These are also called iterated function systems.
An alternative expression of a discrete dynamic system
is a difference equation ∆yt+1 ≡ yt+1 − yt = g({yt}).
We can define a recursive equation from a difference
equation by f({yt}) = g({yt}) + yt, and vice versa.
Difference equations are closely related to differential
equations, and are used in computational simulations.
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Classifying Difference Equations
We can take differences of differences:

∆2yt+2 = ∆yt+2 −∆yt+1 = (yt+2 − yt+1)− (yt+1 − yt)

The exponent on ∆ is called the order of the difference equation.
A higher-order difference equation can be broken down into a
system of first-order difference equations.
If f is linear, the difference equation is called linear.
f can depend on t. If it does not, the dynamic system is
autonomous.
We consider only the autonomous case where f is the same
function of y for all t. This is more than a matter of simplifying
computation and notation: it rarely makes sense to discuss steady
states in non-autonomous systems.
We classify recursive function systems the same way.
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Difference Equations and Polynomials
Consider a dynamic system where the position of a falling object is
measured with respect to time. Suppose it started at rest at a
height of c.
Then its position at time t is xt = c − at2, where
a = 1

2g ≈ 4.9m/s2.
Suppose the position is measured at one second intervals.
The 1st difference is
∆xt = xt − xt−1 = (c − at2)− (c − a(t − 1)2) = a − 2at.
The 2nd difference is ∆2xt = ∆xt −∆xt−1 =
(a − 2at)− (a − 2a(t − 1)) = −2a.
Thus a second-order difference equation based on a quadratic time
path is always a constant.
Note that this analysis is based on the length of the interval
analyzed being a constant.
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A Recursive Equation Example

Consider an infinite sequence of binary choices. We represent one
alternative by “0” and the other by “1”.
An example sequence could be written “z = .1101000110101 . . . ”,
suggesting the binary representation of real numbers between 0
and 1. In fact, this is the case, and there is a continuum of such
sequences (a “big” infinity). Note: z0 = 1, z1 = 1, z2 = 0, ….
Consider the (non-autonomous!) dynamic system
defined by a sequence of functions ft such that
xt = ft(x0, . . . , xt−1) for t = 1, 2, . . ..
Evidently we can derive a new infinite sequence
from any infinite sequence by applying this system
to it. Call this sequence f(z) (no subscripts!)
Question: how big is the set {f(z)|z ∈ [0, 1)}?
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The Surprising (?) Answer

You might think that with all the flexibility of an infinite sequence
of functions depending on everything in the past and a big infinity
of z to choose from, the answer would be something like “a lot.”
In fact, the answer is two.
The only part of z that affects the result sequence x is the first
component z0:

x0 = z0
x1 = f1(x0)
x2 = f2(x0, x1)
x3 = f3(x0, x1, x2)

...
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The Surprising (?) Answer, cont.
This sequence can be rewritten

x0 = z0
x1 = f1(z0)
x2 = f2(z0, f1(z0))
x3 = f3(z0, f1(z0), f2(z0, f1(z0))

...

x = {x0, x1, x2, . . .} depends only on z0, which must
be either 0 or 1!
In fact, the answer is two.
From now on, we consider only sequences of scalars,
and the case where the {yt−1} are ignored. The
general case isn’t harder in principle, but the
computation and notation are tedious.
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Discrete Processes
Some interesting processes really are discrete. Examples:

The cobweb, Hicks, and Marshall adjustment processes can be
considered as the result of (rather naive) behavior in a series of
markets. For example, agricultural markets from one year to the
next. (It is the inelasticity of demand and supply for food that
made Marshall decide to use a model where quantity adjusts and
price responds to the quantity adjustment.)
Human beings cannot be continuously active. They must sleep,
best with consistent daily sleep cycle. Thus it makes sense to
measure human activity per day.
Most activities consist of a sequence of tasks. The tasks may take
variable amount of clock time to complete, but it often makes
sense to count “time” in terms of tasks completed rather than
watching the clock.
Newton’s method for solving equations.
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Discrete Simulations

But one of the most important uses of discrete processes is simulation
of continuous processes.

You’ve probably used the Artisoc or Netlogo software in jisshuu to
model crowd behavior in buildings or in disaster response.
Weather simulations: global warming, general local weather, and
specific phenomena like typhoons or El Niño.
Numerical computation of processes such as price adjustment in a
market.
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Differential equations

A differential equation is a mathematical expression of a constraint
involving certain variable quantities and their derivatives.

A differential equation is often called a law of motion, but they
arise in other contexts, such as determining the shape of a chain
hanging from two points.
A set of differential equations relating a specific set of variables is
called a system of differential equations.

Differential equations can be graphed in many ways: time series,
phase diagrams, vector fields, and many others.
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Time series: sin x vs. cos x

Sine and cosine chase
each other (high and
low) across the
graph.
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Phase diagrams

In economics, the most useful graph is the phase diagram, which
graphs the combinations of values of two variables that occur
simultaneously. Phase diagrams do not show when the
combinations occur, only that they do at some point.

The parameter (in dynamics, the time variable) is implicit.
Because of continuity the phase diagram shows the order of values.
Thus the graph is often called an orbit.
It doesn’t show direction of time flow.

For example, you saw the graph of sin x and cos x against x. This
is not a phase diagram. However, you can see that they are
“chasing” each other. The exact relationship is displayed on a
phase diagram of sin x against cos x, and it is the circle
sin2 x + cos2 x = 1.
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Phase diagram: sin x vs. cos x

Sine and cosine chase
each other (high and
low) around the
circle.
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Qualitative properties of differential equations

In economics, we often do not have very precise information about
differential equations we use. E.g., dx/dt = f(x, t), with some
marginal conditions on f.
Even if we do, we may not be able to solve to get an explicit
function x(t).
In looking at economic growth theory, we will focus on one set of
qualitative properties: those involving the steady state, x such that
ẋ = 0. Market stability analysis also revolves around steady states,
with the special property that they should correspond to the
supply-demand equilibrium.
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Classifying differential equations

If all of the unknown quantities are functions of one of the
quantities, all of the derivatives may be reduced to ordinary
derivatives, and the equation is called an ordinary differential
equation.

The single quantity is called the parameter. In dynamics, the
parameter is interpreted as time.
Otherwise, partial derivatives are involved, and the equation is
called a partial differential equation.
If a system of differential equations contains any partial differential
equations, it is classed as a system of partial differential equations.

The order of a system of differential equations is the order of the
highest derivative involved in the system.

We are primarily interested in first-order differential equations of
the form dy

dx = f(x, y).
Differential equations of higher order may be reduced to systems of
differential equations.
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Example: free fall

According the Newton’s Law of Gravity, when an object is allowed
to fall freely to the ground, its acceleration toward the ground is
constant.
We denote the height of the object at any time t by h(t).
The velocity (speed and direction) of the object is the first
derivative of height, denoted dh

dt , h′(t), or ḣ(t).
The acceleration of the object is the first derivative of velocity, or
the second derivative of height, denoted d2h

dt2 , h′′(t), or ḧ(t).
Since it is constant, we have a second-order differential equation
h′′(t) = g.
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The general solution for free fall
We solve the differential equation by finding an equation with no
derivatives in it.
This is “simply” a process of integrating the equation as in basic
calculus. Each integration lowers the order of the differential
equation by one, and when the order reaches zero, we’re done.

h′′(t) = g∫
h′′(t) dt =

∫
g dt

h′(t) = gt + C1∫
h′(t) dt =

∫
gt + C1 dt

h(t) =
1

2
gt2 + C1t + C2

where C1 and C2 are constants of integration.
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Specific solutions for free fall

g, C1, and C2 are arbitrary constants, and we cannot use them to
compute the height of the object numerically until we know their
values.
The values are determined from other facts about the problem.
The “standard” problem specifies that

g is known from previous experimental measurements.
Time is measured in seconds since the object was set free.
The object was at rest at time 0, so 0 = h′(0) = g · 0 + C1 = C1.
The height of the object at time 0 was measured to be h0, so
h0 = h(t) = g · 02 + C2 = C2.

Stephen J. Turnbull Dynamic Equations



Example: Soap bubbles

Why are soap bubbles spherical?
The mathematical model of a bubble is based on a system of
partial differential equations which characterize equality of air
pressure inside and outside of the bubble.
These differential equations have a spatial parameter, i.e., the
position of each point on the bubble. So differential equations
need not be based on a time parameter (though in economic
dynamics they are).
The soap bubble model is completed by describing it as an
optimization problem which minimizes surface area subject to the
system of differential equations.
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Unconstrained population growth
We assume some species (bacteria, plants, animals, firms in an
industry) with

specific resource requirements for reproduction,
an unlimited supply of those resources, and
no predators.

Then the increase of the species population may be expected to be
proportional to population with coefficient fertility rate:

dP
dt = αP.

Collecting variables gives dP
P = α dt, then integrating gives

ln P = αt + C, and finally exponentiating

P(t) = P(0)eαt,

where P(0) = eC is the population when t = 0.
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Constrained population growth

Assumptions are as in unconstrained growth, except that due to
resource limitation or increased predation, the death rate increases
proportionally to population.
Here the differential equation is

dP
dt = B − D = βP − (δP)P = P(β − δP).

The solution is
P(t) = β

δ + [ β
P(0) − δ]e−βt

.

It is not easy to derive this solution directly, and we don’t need to
do that. Verifying that it is a solution is assigned as homework.
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Approximating y′ = ax − by and y(0) = a/b
We can find an approximate specific solution to y′ = ax − by and
y(0) = a/b where a > 0 and b > 0 using the following procedure:

Plot the point (0, a/b) on the graph.
Evaluate dy

dx at (0, a/b), getting −a, so the specific solution f (i.e.,
y = f(x) for all x) is downward-sloping at that point.
Assume f has a minimum. Then at that point dy

dx = 0, so y = ax
b .

(The derivative exists because f solves a differential equation!)
We need to check that the intersection of f and y = ax

b is a
minimum, not an inflection point, of f.

d2y
dx2 = a − bdy

dx = a > 0,

because y = ax
b is defined so that dy

dx = 0, and f is convex, so this is
a minimum.

The curve must look something like the next graph.
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Approximating y′ = ax − by and y(0) = a/b

We use the
differential equation
directly, plus the
boundary condition
(y(0) = a/b) to
compute some of the
points on the curve
y(x), and its shape.
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Isoclines

“Cline” is a Greek word meaning slope. “Iso” means “equal” in
the same language. Thus, “isocline” means “something” has the
same slope in different places. In fact, an isocline is the set of all
points where that “thing” has a given slope.
In our specific solution, by definition, f has the same slope m for
all points satisfying m = dy

dx = ax − by. So the general solution has
isoclines with the parametric equation y = ax−m

b . m can be any
number.
Isoclines need not be linear.
The isocline for dy

dx = 0 is special, because any steady state must
be contained in that isocline.
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Isoclines of y′ = 2x − y

Each arrow shows y′
at the point of its
tail. The arrows that
cross each isocline
have the same slope
along the isocline.
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Direction fields

An alternative representation is to attach the slope implied by dy
dx

to each point.
This is call a direction field.
If we start at some point and “connect the arrows” head to tail,
we get a curve called an integral curve. This is the graph of a
specific solution.
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Direction field of y′ = 2x − y

The curves are
different trajectories
depending on the
starting point. See
how they track the
arrows showing y′ at
each point.
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Other properties

In the image of the direction field, it seems that there’s a “main
stream” crossing from the 3rd quadrant through the 4th quadrant
and then going up and to the right forever in the 1st quadrant.
This is correct.
Consider the isocline going through (0, 0). The isocline has slope
2, but the direction field’s value is 0. So the particular solution
going through (0, 0) will “move off” the isocline.
Since our isoclines are linear with slope a/b, let’s consider the
condition dy

dx = a
b . Then a

b = ax − by, and y = a
bx − a

b2 . Thus this
condition identifies an isocline!
Of course this is harder to do for nonlinear dy

dx , but when possible
it is very useful.
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Solving differential equations computationally

In one sense, a differential equation always has a solution. That is,
the fundamental theorem of calculus says that for an integrable
function f(t),

∫ u
ℓ f(t)dt = F(u)− F(ℓ), where f = dF

dt , and F is
continuous and differentiable.
In practice, we can always compute a time path for f(t) by
simulation (picking a value for F(ℓ), then setting
F(ℓ+ (n + 1)δ) = F(ℓ+ nδ) + δf(ℓ+ nδ))
for δ “sufficiently small”).
However, this is not generally very useful in
economic theory (though it is frequently used
for examples and actual simulations).
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Characterizing solutions

Because of resource limitations, “explosive” growth by individual
entities cannot continue indefinitely. From the point of view of
individuals in an economy, there should be some stability.
History shows that individuals can usefully predict (near) future
conditions by assuming they won’t be (much) different from
current conditions, so there is a degree of stability.
For these reasons, not all differential equations
are useful models of economic phenomena.
We also want to characterize the solutions in terms of

“where they settle down” (existence of steady states)
“how fast they settle down,” (stability of and speed
of convergence to steady state), and
“optimal control” (where the direction and speed of
change can be controlled by policy).
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