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Last lecture presented Robert Solow’s seminal growth model, includ-
ing the solution, comparative static and dynamic analysis.
This lecture considers a model of a renewable resource, whose math-
ematical expression is quite similar to Solow’s model, but whose in-
terpretation is quite different.Stephen J. Turnbull Exhaustible Resources



Optimization in Dynamic Models

Solow’s basic growth model is entirely dynamic. No optimization
is present at all.
The “Golden Rule” is determined by using steady state to reduce
the growth model to a single period (although it is repeated
indefinitely), and then treating s as a choice variable in a static
optimization.
Now we look at exhaustible resources, both

renewable resources (concentrating on the fishery), and then
pure exhaustible resources (such as oil),

as first examples where economic considerations (optimization and
equilibrium) enter.
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Pure Exhaustible Resources and Renewable Resources
Exhaustible resources come in two varieties: pure exhaustible
resources like oil, and renewable resources like fish. Renewable
resources are “self-renewing” in that if left alone they will grow
back to the original stock. However, like pure exhaustible resources
(and unlike capital) there is an upper bound on the stock.
Biological resources like fish are also similar to pure exhaustible
resources in that once exhausted, there will never be any more
(Jurassic Park excluded).
Exhaustible resources are necessarily storable. Such resources have
the property that the rental price (price of consumption) is equal
to the asset price. (Compare: is the price of a rental car equal to
purchase?)
You might think that a pure exhaustible resource is just a special
case of renewable resource, with the natural rate of increase set to
zero. In some ways this is true, but each type has its own natural
mode of analysis.
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Summary: Exhaustible Resource Definition

An exhaustible resource is a good where the stock is bounded and
the natural rate of increase has an upper bound, but can be
consumed arbitrarily quickly. If completely depleted, no more will
ever exist.

A pure exhaustible resource cannot increase at all. Once any
portion is consumed, that quantity is gone forever.
A renewable resource is an economic good whose stock
automatically renews itself at some rate, but this rate (and the
stock itself) has some upper bound.

Renewable resources would better called self-renewing resources,
but renewable is traditional usage and can’t really be changed now.

Stephen J. Turnbull Exhaustible Resources



Examples of Exhaustible Resources
A pure exhaustible resource can only be used up; it cannot
increase. Oil (or any other mineral resource) is a good, and very
important, example of a pure exhaustible resource.
A renewable resource is one which has a positive rate of natural
increase, for at least some level of the stock. Tuna fish (or any
other wild biological resource) is an example.
Solar energy is often called a “renewable energy source.” That is
reasonable English usage, but solar energy is not a renewable
resource in the sense used here.

The Sun will always be there again tomorrow (no exhaustion).
It provides more energy than we can imagine using in the
foreseeable future if only we could capture it (effectively
unbounded).

A habitat’s “ability to absorb pollutants” may be analyzed as a
renewable resource. Consider how Lake Erie (U.S.) or Lake
Kasumigaura managed to recover from heavy pollution.
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Introduction to Renewable Resources

Dasgupta and Heal (Economic Theory and Exhaustible Resources,
1979) describe these as “resources that are at the same time
self-renewable and in principle exhaustible.”
Not mineral resources, called “exhaustible,” whose stock cannot
be increased, although more efficient technology (e.g., deeper oil
wells) and discoveries of new stocks may arise.
Not durable commodities. If the entire stock of automobiles were
destroyed, we could still build more and replace them. This might
depend on available exhaustible resources, but if the resources
were available, the automobiles could be replaced.
Populations of biological creatures, and agricultural land, are
examples. Self-cleansing of polluted water is an example.
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Populations

We borrow terms and ideas from biology, but the exact definitions
used often differ.
A population is a group of individuals of the same kind which
reproduce themselves, perhaps only in the context of the group.
The population size is the number of individuals. (In biology, it is
often the total mass, because as resources become strained
individual size decreases. We abstract from this issue.)
In nature populations tend to increase over time. This increase
should depend on

the period of time θ over which increase is measured
the current population Zt
other factors ζt

giving Zt+θ = G(Zt, ζt, θ).
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Typical Laws of Increase
We are typically interested in the natural rate of increase of a
population.
If ζ is constant, then we may drop its notation. We typically
assume that θ enters multiplicatively, and we write
G(Zt, θ) = Zt + H(Zt)θ.
With continuous time, we rewrite as the difference, divide by θ,
and take the limit as θ → 0:

lim
θ→0

Zt+θ − Zt
θ

= Żt = H(Zt).

This defines H.
Example: H(Z) ≡ 0 is a constant population size. This means
renewable resources include exhaustible resources as a special case.
Example: with abundant resources, H(Z) = λZ, giving exponential
growth.
Example: often, H(Z) is a bell curve.
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Bell-Shaped Curves
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Logistic Growth

The “S-shaped”
logistic growth
curve is a typical
time path for a
bell-shaped
natural rate of
increase function
(in logistic
growth, H(Z) =
aZ(1− bZ), an
inverted parabola.
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Comment on Extreme Cases

We described pure exhaustible resources as a boundary case of
renewable resources.
Although we can use the same specifications to describe them, the
mathematical analysis of the typical case often doesn’t hold for
the boundary case.
Example: linear functions are a special case of convex functions.
But a linear cost function doesn’t allow us to determine the scale
of firms in the industry—it doesn’t matter if there is one firm or
many, the cost structure is the same. However, strictly convex
costs (decreasing returns to scale) will have a unique scale for
each firm in equilibrium.
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Harvesting the Fishery
How does the dynamic of the fishery change when we add
large-scale fishing to the model?
In economics, we simply remove fish from the population. In a
differential equation model, we represent this by the rate of
harvest at each instant of time, and write

Żt = H(Zt)− yt.

In biology, we would also consider
Collateral damage to predators and prey of the commercially
valuable fish. For example, tuna nets often catch (and drown)
dolphins.
Pollution from fishing activity (e.g., spilled oil and gasoline) might
kill the target fish.
Fishing activity might interfere with reproduction.

Our simple model ignores these factors but they could be added.
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Constant Harvest Rate

Consider the stationary
policy yt = y ≤ ỹ = max H
for all t. Note that there
are two steady states at Z−

(unstable) and Z+ (stable),
unless y = ỹ, when the
unique steady state at Z̃ is
unstable.
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The Case y = ỹ

When y = ỹ there is a steady state at Z̃ which is considered
unstable.
Looking closely, we see that although for Z < Z̃ where
Ż = H(Z)− y < 0 and Z diverges from Z̃, for Z > Z̃ again
Ż = H(Z)− y < 0, and Z converges to Z̃.
Couldn’t we say Z̃ is “half-stable” or “stable from the right”?
Formally, yes, but as a model it doesn’t make sense. We don’t
know why we deviate from Z̃, so it could be up or down.
Eventually it will be down, and divergence will occur. If it reaches
Z, extinction occurs (divergence is permanent).
Conceptually (i.e., in modeling) “stable” means “always
converges.” This approach is useful in modeling because we may
assume that once the steady state is reached, the system will be
“approximately in steady state” forever.
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Harvest Policy in a Feedback Loop
The fact that the maximum harvest steady state is unstable means
that a laissez faire policy toward the fishery is very risky. A policy
which ignores the population and simply takes the optimal catch
will eventually lead to extinction.
Use the policy yt = ỹ + ξ(Zt − Z̃) to achieve a stable maximum
harvest steady state.

This policy is called a negative feedback loop. The path of Z it
induces is a closed-loop solution. (It’s negative because in Z phase
space we have

Ż = H(Z)− h(y) = H(Z)− (ỹ + ξ(Z − Z̃))
so the direct coefficient on Z is −ξ.)
The constant policy is called an open-loop solution (generally, any
policy which is not a function of Z).
Note that, though simple to state, this is not necessarily an easy
policy to implement: how do you count the tuna in the sea? If
many fisherman are involved, how do you share the cost of the
census?
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Closed-Loop Harvesting

Use the negative feedback
policy yt = ỹ + ξ(Zt − Z̃).
Note that the steady state
at maximum harvest is
stable.
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Comparing Solow’s model with the fishery
In Solow’s model, the characteristic equation results in a bell
curve, intersecting the horizontal axis (meaning k̇ = 0, a steady
state) at the origin and at some level of the capital-labor ratio, k∗.
The steady state at 0 is unstable, while the steady state at k∗ > 0
is stable.
Similarly, in the fishery, the natural rate of increase curve is H a
bell curve, intersecting the horizontal axis (meaning
Ż = H(Z) = 0, a steady state) at Z ≥ 0 and at Z̄ > Z. The steady
state at Z is unstable, while the steady state at Z̄ is stable.
The difference between the two models is that in the fishery, H(Z)
can be converted directly to consumption by harvesting the fish,
which means that the maximum of H, H(Z̃) is of economic
interest as the maxumim sustainable catch. On the other hand, k̇
is not even an input into production (k is), so it is not of economic
interest in itself.
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When Do Steady-State Policies Make Sense?

This is an economic (not “purely dynamic” as with Solow) issue.
Need an objective to optimize (until now, implicitly “maximize
steady state y”).
Need an infinite planning horizon, else you want to use up the
population “before the world ends.”
Entry must be controlled (else “tragedy of the commons” occurs
as new entrants try to “grab their share” by consuming earlier
than future entrants do).
How about “maximum sustainable” harvest ỹ (with a closed-loop
policy)?

No discounting, or time preference outweighs higher future
consumption.
With discounting, a steady-state optimal policy exists on the left
side of the bell, with Z < Z̃.
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The Whaling Controversy

The blue whales were hunted to near extinction (in the
conservationist sense) by the early 1960s.
We have a lot of data (appended) from the Committee for
Whaling Statistics of Norway.
Looking at the data we see that efficiency of catch was greatest in
the 1930s, by the late 1950s was much less efficient.
We can also see that the numbers are hardly smoothly varying, it’s
hard to see a clear trend, other than the average productivity.
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The Whaling Controversy, cont.

So we see that the Japanese, Icelanders, and Norwegians argued
that Z0 ≥ Z̃ > Z.
The conservationists (and the non-whaling nations) worried that
Z0 < Z, that is Y = F(Z,X∗(Z)) > H(Z) for all Z

F(Z,X) is the catch of whales as a function of number of whales
and number of ships in the industry (production function), and
X∗(Z) is the zero-profit number of ships as a function of Z
(competitive equilibrium).

Theoretically, it’s impossible to say which is correct; we look at an
empirical model.
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An Empirical Model

Using a discrete model, we have
Zt+1 − Zt = H(Zt) = Zα

t (A − Z1−α
t ), and

Yt = F(Zt,Xt) = AZα
t (1− e−νXt).

Based on the data, we can estimate this system of equations
(done by Michael Spence). We get

ν = 0.0019, α = 0.8204, A = 8.356.

Maximum sustainable catch H(Ẑ) = 9890, while Ẑ = 45177.
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Are the Whales Endangered?

Using Y1960 = 1987 and X1960 = 418, we get an estimate of
Z1960 = 1639. That is, at that pace the whales would be extinct in
the end of 1960! (Estimating for 1955-1959 gives Y = 1636, 1496,
1651, 1105, and 1174 respectively.)
These numbers are pretty suspicious: they claim that for five years
running whalers took more whales than were in the ocean.
The implied natural rates of increase are pretty impressive, though:
H(Z) = 1983, 1867, 1995, 1518, 1582, and 1985. Note that these
track the catch numbers quite closely. This is not surprising: the
model is tuned that way.
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Optimal Policy

Our model implies that the whales are not below Z, but well below
Z∗.
In fact, the calculation of the optimal policy suggests (using the
figures above and r = 0.05) a period of abstaining for 9 years.
Z∗ = 67000, and H(Z∗) = 9000.
History showed that political aspects are extremely important.
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Whaling Data (pre-WWII)

Year Boats Catch Year Boats Catch Year Boats Catch
1909 149 316 1920 112 2987 1931 100 6705
1910 178 704 1921 142 5275 1932 186 19067
1911 251 1739 1922 174 6869 1933 199 17486
1912 246 2417 1923 194 4845 1934 242 16384
1913 254 2968 1924 234 7548 1935 312 18108
1914 182 4527 1925 235 7229 1936 254 14636
1915 151 5302 1926 233 8722 1937 357 15035
1916 94 4351 1927 222 9676 1938 362 14152
1917 130 2502 1928 242 13792
1918 141 1993 1929 337 18755
1919 154 2274 1930 280 26649
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Whaling Data (post-WWII)

Year Boats Catch Year Boats Catch
1945 158 3675 1953 368 3009
1946 246 9302 1954 386 2495
1947 307 7157 1955 419 1987
1948 348 7781 1956 395 1775
1949 382 6313 1957 417 1995
1950 468 7278 1958 420 1442
1951 430 5436 1959 399 1465
1952 379 4218 1960 418 1987
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Conclusions

Profit maximization is consistent with some degree of
conservation; it does not imply extinction of the species.
Population will be smaller than Z̄, but greater than 0 in the steady
state.
If population is depleted below the optimal stationary policy, a
profit-maximizing industry would advocate a total ban on
harvesting, just like the conservationists!
The maximum sustainable rate is not a focal point for policy.
If Z̃ < Z, profit maximization conflicts with conservation.
Also, things may be somewhat harsher than it seems here: in the
long run, as supply of output falls, you might expect that q would
rise, causing harvest rates to rise.
Z̃ < Ẑ.
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