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Introducing Overlapping Generations Models and
Chaotic Dynamics
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Overlapping generations models, and an introduction to chaotic
dynamics.
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Overlapping generations models

Up to the present, we’ve considered dynamic constraints on single
homogeneous entities. Examples:

In Solow’s model, the single “interesting” entity is the
representative worker/consumer, which we derive using the special
properties of CRTS production.
In the fishery, the “interesting” entity is the population of fish (or
whales). Although the fisherman do interact in equilibrium, the
dynamic constraint is on the population.

By contrast, in an overlapping generations (OLG) model, there are
constraints between agents existing at the same time and a given
agent across time periods.
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OLG constraints
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A simple OLG model
Follows Ch. 17 of Lucas and Stokey.

The economy has a constant population of agents (worker/
consumers).
The agent lives for two periods, working when young and
consuming when old. (This is a technical assumption, convenient
in notation, computation, and interpretation because the number
of workers equals the number of consumers equals half the
population.)
The utility function is U(c, l) = −H(l) + V(c).
There is a single, non-storable good, produced with a linear
technology y = xl, where X is generated by a Markov process.
(This means that xt+1 is generated by a random variable which
may depend on xt but nothing else.)
There is a constant supply of fiat money (government-issued, as
with yen and dollars) M.
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How the OLG model works

We make the technical assumption that there’s one person in each
generation. (Like Solow’s model, this one is CRTS.)
Based on an assumption of equilibrium, markets will clear:

The young worker will supply labor l, produce y = xl, and receive all
the money M from the old consumer.
The old consumer will consume c = y, and pay all the money M to
the young worker.

The old consumer’s behavior is forced: they have money, they buy
the good in a competitive market, so they’ll spend all the money
and buy all the good.
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The worker’s model

When young, the worker dislikes working, with the usual
“decreasing returns to scale” conditions: H : [0, L) → R+ satisfies
H′(l) > 0 and H′′(l) > 0 for all l, and H′(0) = 0 and
liml→L H′(l) = ∞ (Inada!).
When old, the consumer likes consuming, with decreasing marginal
utility. V : R+ → R+ satisfies V′(c) > 0 and V′′(c) < 0.
The equilibrium is characterized by

the “price” (of money in goods, not the reverse!) p(x), which
depends on the state of the world (random worker productivity),
the “labor supply” function n(x) (n depends on x, not the wage),
and
market-clearing xn(x) = M/p(x).

When old, the worker born at t consumes xtn(xt)(p(xt)/p(xt+1)).
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The worker’s optimization
The worker chooses l = n(x) to maximize

−H(l) + Eξ
[
V(xlp(x)p(ξ)) | x

]
where the worker knows her own productivity x (invert the price
function p) but productivity of later generations is random ξ.
Given a price function p, the first-order condition for n solves

H′(n(x)) = Eξ
[
V′(xn(x)p(x)

p(ξ)) | x
]

(there are no n′ because x is a parameter known to the worker, not
a choice variable—the worker chooses a different n for each x).
Substituting from the market-clearing conditions for this period
and next gives

n(x)H′(n(x)) = Eξ
[
ξn(ξ)V′(ξn(ξ)) | x

]
Stephen J. Turnbull OLG Models and Chaos
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The equilibrium

Suppose x has a distribution independent of time and across time.
Then n(x) = n̄ > 0 for all x.
Under certain conditions on the Markov process, and the same
assumptions on production and utility, for a general process (i.e.,
serially correlated x), there exists

f∗(x) = Eξ
[
ϕ(ξζ−1(f∗(ξ))) | x

]
where ϕ(y) = yV′(y) and ζ(l) = lH′(l).
Note 1: f∗ is defined as a fixed point, like a value function.
Note 2: This is not a differential equation model. p(x), n(x) are
determined “independently” (in a sense) from p(x′), n(x′) for
x ̸= x′.
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The Lucas “Islands” model
We change the preceding model in the following way.

We have a deterministic production function, y = l (i.e., x ≡ 1).
Workers (young) are randomly assigned to two “islands”. θ

2 go to
one island and 1− θ

2 to the other, where 0 < θ
−
< θ̄ < 2.

Consumers (old) are assigned randomly to the two islands such
that each island has half the old population and half the money.
The government pays interest on or taxes the money stock
randomly, such that mt+1 = xmt for a worker who received mt,
and x is random between 0 < x

−
< x̄ < ∞.

The varying ratio of workers to consumers is a real shock (affects
available consumption per old person, while the monetary shock is
nominal. Nominal means there is no change to physical
possibilities. It does reduce the accuracy of workers’ assessment of
their future consumption, and thus their incentive to work.
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Market conditions

Here the state of the economy is 2-dimensional: (x, θ). (x is the
increase factor for the money supply, θ the population assignment
between islands.)
As before (equilibrium) price of consumption and (optimal) labor
“supply” are functions of the state: p(x, θ) and n(x, θ).
In the previous model, pc = M

l , where the latter is constant, so we
can invert the equilibrium price function x = p−1(p), and it
doesn’t matter if the workers can observe x, by assumption of
competition they know p and can deduce x from that. Here, M is
uncertain, so in equilibrium, by observing p and given x you can
figure out θ, and vice versa. But you can’t deduce both.
Assume x and θ independent for each t, and (x, θ) i.i.d. over time.
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Equilibrium conditions
Labor supply l = n(x, θ) maximizes over l

−H(l) + Ex̄,θ̄

{
Ex′,θ′

{
V
[

x′lp(x̄, θ̄)
x̄p(x′, θ′)

]
| p(x̄, θ̄) = p(x, θ)

}}
where

x, θ are current values, unknown to the worker
The worker does know p, so can deduce that all x̄, θ̄ such that
p(x̄, θ̄) = p(x, θ), and so take expectation over only those values of
x̄, θ̄, and
given x̄, θ̄, the worker can take the expectation of the consumption
next period based on the independent distribution of x′, θ′, the
values of the nominal and real shocks respectively.

Market clearing: for all (x, θ)

n(x, θ)p(x, θ) = x
θ
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Interpretation

The utility function looks very complicated because of all the bars
and primes, but the important aspects are

the description of each variable on the previous slide, and
most important, the conditioning equation p(x̄, θ̄) = p(x, θ), which
shows how the nominal shock and the real shock are confounded
(confused) by a rational consumer/worker.

The end result is that we can show that dn
dp > 0, which is a Philips

curve, i.e., a positive relationship between employment and
inflation.
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Introduction to Complex Dynamics

The dynamic models so far are simple.
In the Solow model with the standard conditions on the
production function, for example, there are four regions in [0,∞):

the singleton k = 0, the unstable steady state
the region 0 < k < k∗, where k(t) is monotonically increasing in t
the singleton k = k∗, the stable steady state, and
the region k > k∗, where k(t) is monotonically decreasing in t.

The renewable resource model is only a little more complicated.
Possibly an additional region from 0 to the unstable steady state
where Z(t) is monotonically decreasing in t.
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A dynamic system: The Hénon map
A discrete time iterated function in two dimensions:

xt+1 = 1− ax2t + yt

yt+1 = bx

import numpy as np
def make_henon ( x , y , a=1.4 , b=0 .3) :

whi le True :
y i e l d x , y
x , y = 1 − a*x**2 + y , b*x

def c l a s s i c_henon ( n ) :
henon = make_henon ( x=0.3 , y=0.3)
xys = np . empty ( ( 2 , n ) )
f o r i , ( x , y ) i n enumerate ( henon ( ) ) :

i f i >= n : break
xys [ 0 ] [ i ] , xy s [ 1 ] [ i ] = x , y

return xys
xys = c l a s s i c_henon (100000)
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A Hénon sequence

Let’s look at the first 10 points of the sequence:
>>> list(zip(xys[0][:10], xys[1][:10]))
[(0.3, 0.3),
(1.174, 0.09),
(-0.839586399999, 0.3521999999999),
(0.36533254770, -0.2518759199999),
(0.561269061418, 0.1095997643127),
(0.668567621285, 0.168380718425),
(0.542604988501, 0.2005702863856),
(0.788382043419, 0.1627814965505),
(0.2926167516090, 0.2365146130259),
(1.116640224374, 0.0877850254827)]

No obvious pattern here.
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The histogram of x

Ranges from -1.3 to +1.3, with frequencies up to 5000.
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The histogram of y

Ranges from -0.4 to +0.4 with frequencies up to 5000.
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Two-dimensional distribution

There’s no obvious pattern in the (short) data series or the
histograms. Random? (but not uniform).
Graph a small sample of points.
Clearly not very random.
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The Hénon attractor phase diagram
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The Hénon attractor

There is fine structure in the phase diagram, which can be seen by
generating enough points and zooming in on smaller and smaller
regions. What looks like a thick curve is actually composed of
several parallel curves, and each of those has a similar structure,
“all the way down.”
The structure is fractal, which means that even though the graph
looks like a curve that is smooth and continuous with respect to
time, in fact the next point jumps around with each iteration in a
chaotic way.
It’s called “fractal” because there is a sense in which the attracting
region has more than 1 dimension even though it has zero area.
By some definitions, this dimension is fractional (like 3/2).
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The logistic map

The Hénon map is two-dimensional, and quite complicated.
To understand chaos, we simplify to a one-dimensional system.
Complex dynamics can exist in a one-dimensional discrete time
system (impossible with a differential equation), e.g., by iterating
the logistic map f(x) = ax(1− x).
Any concave, single-peaked map gives the same result (it doesn’t
even need to be differentiable).
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Iterating the logistic map

We consider “time series” for various values of a ∈ [0, 4].

def b e l l ( a , x ) :
whi le True :

y i e l d x
x = a*x*(1−x )

def b e l l _ s e r i e s ( a , x=0.3 , n=50):
xs = [ ]
b = b e l l ( a , x )
f o r i i n range ( n ) :

xs . append ( ( i , next ( b ) ) )
return xs
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Logistic map: a = 0.5
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Logistic map: a = 1.0
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Logistic map: a = 2.0
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Logistic map: a = 3.0
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Logistic map: a = 3.5
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Logistic map: a = 3.8
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Logistic map: a = 3.6
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Logistic map: a = 3.55
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Logistic map: a = 3.57
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Logistic map: a = 3.575
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Chaos theory
The Sharkovsky Theorem says that for an iterated function f

20 · 3 =⇒ 20 · 5 =⇒ 20 · 7 =⇒ . . .

=⇒ 21 · 3 =⇒ 21 · 5 =⇒ 21 · 7 =⇒ . . .

=⇒ 22 · 3 =⇒ 22 · 5 =⇒ 22 · 7 =⇒ . . .

. . . =⇒ 23 =⇒ 22 =⇒ 21 =⇒ 20

where “n” means f has a period-n cycle for some x0.
A cycle of period 22 = 4 implies there is a cycle of period 21 = 2
and one of period 20 = 1 (i.e., a fixed point f(x) = x).
The Li-Yorke theorem says that period three implies that almost
all x0 in the domain of f) are asymptotically aperiodic: there is no
cycle, and there is ϵ > 0 such that for given t and s > 0, no
matter how small |xt − xt−s| is, there is a time T > t such that
|xT − xT−s| > ϵ.
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Chaos in economics

Chaos has been proposed as a source of volatility.
How can economists distinguish chaotic dynamics from stochastic
dynamics?
In the Hénon map, the values jump around, but accumulate in an
attractor.
Independence of x and y implies points should be uniformly
distributed in two dimensions. But they are not.
Chaos would arise because of autoregression, needing no
disturbance. In stochastic models we usually have reason to
believe that disturbances in different equations are independent.
Independence implies random distribution in all dimensions. In a
chaotic model, there will be regions that the disturbances “avoid”,
as in the right center of the Hénon map.
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