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Abstract
Advanced multivariate methods and inference. A brief
introduction to data mining as an alternative/complement to
“classical” statistics.
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Final Examination

• The final examination for this class will be held in 8A108 on
Thursday, June 27 from 12:15–15:00.

• I plan to include content that was also on the midterm (about
1/3 and no more than 1/2 of the questions), as well as material
covered since the midterm (at least 1/2). Conceptual material
will be the majority as with the midterm.

• Length will be greater than the midterm, but not 2X as long.
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Review Session

• A review session will be scheduled, probably on Friday, June 21,
or Monday, June 24, from 5pm-7pm.

• Send mail to data-vote@turnbull.sk.tsukuba.ac.jp to
expression your preference for date.

• The mail should have the following content:
line 1: Your student ID
line 2: Preferred date/time
line 3: Two dashes and nothing else: --

4 and up: Any other comments about the review session.

• Mail is due by June 18, 09:00 (to allow preparation, reserving
room etc.)
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Structural modeling

• Structural modeling refers to a combination of a domain model
and a statistical model that removes ambiguity from the
interpretation of results. We say such models are identified.

• For example, because there is an infinite number of ways to
define two lines that cross in a given point, it is impossible to
reconstruct either a supply curve or a demand curve merely from
price and quantity data.

• A regression line that relates price data to quantity data need
have no relationship to either supply or demand.

• Addition of variables that only shift supply (e.g., cost factors)
allows identification of the demand curve.

• Addition of variables that only shift demand (e.g., consumer
income) allows identification of the supply curve.
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• The statistical model is very simple: the supply and demand
curves have disturbances that are additive, independent of each
other, and i.i.d. over time.
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Structural modeling

• The supply and demand model is a simultaneous equation
regression model, where we have several equations, and the
specific form of these equations (i.e., whether certain variables
are present in one or the other or both) determines whether the
model is identified.

• In other cases we may be unwilling to specify equations. For
example, our data may be qualitative, so that adding and
multiplying by coefficients can’t be justified. In these cases, we
can use confirmatory factor analysis (CFA) and other kinds of
structural equation modeling (SEM) to test whether our
hypotheses that certain variables are related are supported by
the data.

• Finally, we may be very uncertain about the domain model.
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Here we can use exploratory factor analysis (EFA) to discover
the important relationships in the data.
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Graphical representation of structural
models

We can represent models (causal relationships)
graphically.

• Rectangles indicate observable (explicit, manifest)
variables.

• Ellipses indicate latent (unobservable) variables.

• One-headed arrows indicate direct (causal) effects,
associated with equation coefficients.

• Two-headed arrows indicate (co)variance. These
always connect exogenous variables.

• Errors are exogenous, latent variables.
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Graph for simple regression

• All explanatory variables are observable.

• Only the exogenous error e is latent.
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Graph for reduced form
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• In economic theory, the relationship between
price and quantity is mediated by two latent
variables, supply and demand.

• In this graph, the equilibrium constraint
(quantity supplied = quantity demanded) is
not modeled.

• The latent variables are underidentified, that
is, not identified. Their coefficients cannot be
inferred from this model.

• Unlike the problem of multicollinearity,
identification does not depend on actual
data. It is a property of the theory and the
variables available.
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Instrumental variables
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• By adding an instrument, a variable that
affects one latent variable but not the other,
we can identify the coefficient on the second
variable. (The technical condition is that it
not affect the dependent variable.)

• Cost should affect supply, but not demand
(any effect of cost on demand is
communicated to buyers through supply and
price).

• Demand (coefficients) are identified.

• The full model remains underidentified. Some
coefficients cannot be inferred from this
model.
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Full structure

• By adding a new instrument, (consumer)
income, we can identify supply as well.

• Both latent variables are identified.

• We can now say the model is identified.

• N.B. Income is an instrument for demand,
but it identifies supply. Cost is an instrument
for supply, but it identifies demand.
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Identification in complex models

• When there are many unidentified latent variables, or latent
variables share instruments, the identification problem becomes
more complex.

• The basic principle is the same: find instruments that affect
some variables but are not correlated with the error term.
– These can be used to predict those variables.
– The predictions are uncorrelated with the error, so using the

predicted variables instead of raw data satisfies the
assumptions of the regression model.

– As usual, this procedure will increase reported standard
errors, but they will be unbiased. If you use OLS, the
reported standard errors are likely to be strongly biased
downward; you are overestimating the accuracy of the
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regression.
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Computing structural regression models

• In regression models, two-stage least squares (2SLS) can be used
with instruments for linear models where some, but not all,
latent relationships are identified.
– Each model equation is estimated separately.

• For non-linear models, the limited information maximum
likelihood (LIML) method is recommended.

• When the model is identified, the whole structure (all equations)
can be recovered with structural regression, using three-stage
least squares (3SLS) for linear models, and full information
maximum likelihood (FIML) for nonlinear models.
– The model equations are estimated simultaneously.
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Structural equation modeling: SEM

• Economists and some other social scientists like equilibrium
models, which are basically fixed points of a feedback loop
(consider “scissors-paper-rock”), or solutions to simultaneous
equations.

• Psychology and related fields often consider more complex
structure. A set of techniques called structural equation modeling
(SEM) has been developed to handle these.

• Structural regression is one of the techniques that is included in
the field of SEM.
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A complex model

Taken from Klein [2011], Principles and Practice of Structural
Equation Modeling, 3e. (p. 111)
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Issues in modeling in SEM

• This model assumes disturbances (the “D” circles) are
uncorrelated with each other and with the endogenous variables.

• But there may be unmeasured aspects of teacher-pupil
interaction, e.g., due to cover-up of school problems. This causes
estimation bias. The researcher must analyze such issues.
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Resources for SEM

• Structural equation models are often called “LISREL models.”
LISREL was the first high-quality SEM software.

• Specialized SEM tools: Amos, LISREL, Mplus, and Mx. All
have free downloads for students with limited functionality.

• Generic packages: SAS/STAT (CALIS module), SYSTAT
(RAMONA module), and STATISTICA (SEPATH module).

• Check the documentation for your favorite statistics package;
SEM is increasing in popularity.

• The best book is Rex B. Kline, Principles and Practice of
Structural Equation Modeling, 3e, New York, Guilford Press,
2011. It has some of the best discussion of practical modeling
issues I’ve ever seen, especially as in marketing and OB.
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Factor Analysis

• In regression analysis, we assume we have a good idea explaining
the behavior expressed in our data. We represent this
explanation as a functional model.
– Typically, a vector equation y = f(x), i.e.,

y1 = f1(x1, . . . , xk)

...
yn = fn(x1, . . . , xk)

– Sometimes an implicit function: 0 = g(x, y).

• In factor analysis, we only have the dependent variables, y, and
we want to find a small number of factors x1, . . . , xk that explain
those variables.

June 20, 2013 22 factor analysis



A Simple Example
Consider the following data set, expressed in R:

v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)
v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)
v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)

• Ignoring the last three elements, v1, v3, and v5 are data which
are all 1s, except that the 3rd third, the 1st third, and the
middle third, resp. are replaced by 3s.

• v2, v4, and v6 are v1, v3, and v5, resp., with a little added
“noise” (randomness).

• The last three elements ensure nonsingularity.
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Correlations for the Simple Example

v1 v2 v3 v4 v5 v6
v1 1.0000000 0.9393083 0.5128866 0.4320310 0.4664948 0.4086076
v2 0.9393083 1.0000000 0.4124441 0.4084281 0.4363925 0.4326113
v3 0.5128866 0.4124441 1.0000000 0.8770750 0.5128866 0.4320310
v4 0.4320310 0.4084281 0.8770750 1.0000000 0.4320310 0.4323259
v5 0.4664948 0.4363925 0.5128866 0.4320310 1.0000000 0.9473451
v6 0.4086076 0.4326113 0.4320310 0.4323259 0.9473451 1.0000000

• The correlations tell us how closely the variables are related to
each other. It should not be surprising that v1 and v2 have a
very high correlation, and so on.

• Similarly it should be plausible that v1 and v3 have a medium
correlation.
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What Do the Correlations Mean?

• These are artificial data, we know why they are correlated.

• “Eyeballing the numbers,” or plotting them on a graph, also
makes the relationship clear.

• Sometimes neither is true for “real data.”

• We would like an automatic way to “extract” the “causes” of the
measured behavior.

• Factor analysis of the correlations allows us to do this.
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Can We Find Just One “Hidden Cause”?
We ask R to perform a one-factor analysis:
factanal(m1, factors = 1)

Uniquenesses:
v1 v2 v3 v4 v5 v6

0.773 0.792 0.733 0.795 0.022 0.085

Loadings:
v1 v2 v3 v4 v5 v6

Factor1 0.476 0.456 0.517 0.453 0.989 0.956

Factor1
SS loadings 2.800
Proportion Var 0.467
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Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 53.43 on 9 degrees of freedom.
The p-value is 2.43e-08
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How About Two?
We ask R to perform a two-factor analysis:
factanal(m1, factors = 2)

Uniquenesses:
v1 v2 v3 v4 v5 v6

0.005 0.114 0.642 0.742 0.005 0.097

Loadings:
v1 v2 v3 v4 v5 v6

Factor1 0.971 0.917 0.429 0.363 0.254 0.205
Factor2 0.228 0.213 0.418 0.355 0.965 0.928

Factor1 Factor2
SS loadings 2.206 2.190
Proportion Var 0.368 0.365
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Cumulative Var 0.368 0.733

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 23.14 on 4 degrees of freedom.
The p-value is 0.000119
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How About Three?
We ask R to perform a three-factor analysis:
factanal(m1, factors = 3)

Uniquenesses:
v1 v2 v3 v4 v5 v6

0.005 0.101 0.005 0.224 0.084 0.005

Loadings:
v1 v2 v3 v4 v5 v6

Factor1 0.944 0.905 0.236 0.180 0.242 0.193
Factor2 0.182 0.235 0.210 0.242 0.881 0.959
Factor3 0.267 0.159 0.946 0.828 0.286 0.196

Factor1 Factor2 Factor3
SS loadings 1.893 1.886 1.797
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Proportion Var 0.316 0.314 0.300
Cumulative Var 0.316 0.630 0.929

The degrees of freedom for the model is 0 and the fit was 0.4755
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Three with Rotation
We ask R to perform a three-factor analysis:
factanal(m1, factors = 3, rotation = "promax")

Uniquenesses:
v1 v2 v3 v4 v5 v6

0.005 0.101 0.005 0.224 0.084 0.005

Loadings:

v1 v2 v3 v4 v5 v6
Factor1 0.910 1.033
Factor2 0.985 0.951
Factor3 1.003 0.867

Factor1 Factor2 Factor3
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SS loadings 1.903 1.876 1.772
Proportion Var 0.317 0.313 0.295
Cumulative Var 0.317 0.630 0.925

Factor Correlations:
Factor1 Factor2 Factor3

Factor1 1.000 -0.462 0.460
Factor2 -0.462 1.000 -0.501
Factor3 0.460 -0.501 1.000

The degrees of freedom for the model is 0 and the fit was 0.4755
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Why no test?

• You may have noticed that there was no report of a hypothesis
test for the 3-factor model.

• The reason is that there are no degrees of freedom left (degrees
of freedom were zero!)

• Calculating degrees of freedom for the factor analysis is
complicated; leave it up to the program.
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Is There Really an IQ?

R provides a number of sample datasets and programs, including one
on measurements of intellectual ability. But is there a single factor
(“IQ”) that accounts for all intellectual performance?

factanal(factors = 1, covmat = ability.cov)

Loadings:
general picture blocks maze reading vocab

Factor1 0.682 0.384 0.502 0.300 0.877 0.849

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 75.18 on 9 degrees of freedom.
The p-value is 1.46e-12

It would appear not!
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Multiple Factors in Ability

factanal(factors = 2, covmat = ability.cov, rotation = "promax")

Uniquenesses:
general picture blocks maze reading vocab

0.455 0.589 0.218 0.769 0.052 0.334

Loadings:
general picture blocks maze reading vocab

Factor1 0.364 1.023 0.811
Factor2 0.470 0.671 0.932 0.508

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191
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In this data set, it seems that there are just two different “kinds” of
intelligence, which we could call “geometric” (or “visual”) and
“verbal”. “General intelligence” is related to both factors.
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What is data mining?

• Modern economic processes produce huge amounts of data.

• Detailed relationships are unclear. E.g., serial correlation might
be within a few minutes in the market for a given stock, or
extend over years in the same case.

• Some phenomena are not understood at all.

• Use available data to discover them.
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Data mining methods

• Simple examples: correlation analysis, stepwise regression.

• Principle component analysis: find the combinations of
explanatory variables which best expresses all data.
– Eigenvector, eigenvalue analysis of linear algebra.

• Lack of understanding of fundamental principles leads to
nonparametric and even distribution-free analysis.

• Examples:
– “Nearest-neighbor”
– “Kernel smoothing”
– “Local regression”
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“Online” regression

• The regression equation (two variable with intercept) we used
for the model Y = α + βX + ϵ was

bn =
n∑

i=1

xiyi

/ n∑
i=1

x2
i

an = Ȳ − bnX̄

where X̄ = 1
n

n∑
i=1

Xi, xi = Xi − X̄, and similarly for Ȳ and yi.

• If we are receiving new data frequently (e.g., stock markets),

• It is often useful to change to an updating (online, recursive)
algorithm.
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An online regression

• By saving a small amount of information calculated time n, we
can reduce calculation needed to produce new estimates when
new data arrives. These variables are
X̄n =

n∑
i=1

Xi, Ȳn =
n∑

i=1
Yi, Dn =

n∑
i=1

x2
i , and bn.

• Calculating X̄n from X̄n−1 is simple:

X̄n =
1

n

n∑
i=1

Xi =
1

n

(
n−1∑
i=1

X +Xn

)
=

n− 1

n


n−1∑
i=1

X

n− 1
+

1

n
Xn


=

n− 1

n
X̄n−1 +

1

n
Xn
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An online regression, cont.

• Then

Ȳn =
n− 1

n
Ȳn−1 +

1

n
Yn

bn =

(
n−1∑
i=1

xiyi + xnyn

)/(
n−1∑
i=1

x2
i + x2

n

)

=
Dn−1

Dn−1x2
i + x2

n

n−1∑
i=1

xiyi + xnyn

n−1∑
i=1

x2
i

=
Dn−1

Dn−1 + x2
n

(
bn−1 +

xnyn
Dn−1

)

• and an = Ȳn − bnX̄n as usual.
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Homework 8

Due Thursday, 2012-06-21, 11:45 am. Submit by email to
data-hw@turnbull.sk.tsukuba.ac.jp. Your header should look
like this:

From: a-student@sk.tsukuba.ac.jp
To: data-hw@turnbull.sk.tsukuba.ac.jp
Subject: Basic Data Analysis HW#8

The subject should be all half-width Roman letters (ASCII).
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Get the data

Due June 20, 11:45.

1. Get the data set Section1All_csv.csv from the home page.
This data set has several sections with different kinds of data.
After reading and thinking about the rest of the problems, pick
one section; using data across sections is a bad idea.

2. Input the data into your statistical package, and print out the
data of the section (only!—no fair printing everything and
editing the output) you have picked.
There are two basic ways to accomplish this: create a new data
set with exactly the rows and columns you need, or input the
whole thing and use the package to pick out “your” variables.
Also, many packages prefer that variables be columns and rows
be observations, but this sheet has the opposite orientation.
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Correlation matrix

3. Generate a correlation matrix for all the variables in your
section.

4. Think of some way in which some of the variables in your
section are related. Refer to scientific theory where possible.
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Define and estimate a model

5. Define a regression model for the variables you picked.
(a) Explain why you picked the dependent variable.
(b) Write down your regression model.
(c) Estimate the regression model using your statistical package.
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Add an unrelated variable

6. Add a random, and therefore unrelated, variable to the model.
(a) Use Excel or your statistical package to generate a series of

random numbers, enough to make a new variable for your
data set.

(b) Add it to the data set, and print out the data set (i.e., your
model variables plus the random variable).

(c) Add the random variable to your model of problem 5 as an
explanatory variable, and estimate the new regression model.

(d) Define and execute a hypothesis test that the new variable is
in fact statistically unrelated to the model.
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Homework 9

Due Thursday, 2011-06-21, 11:45 am. Submit by email to
data-hw@turnbull.sk.tsukuba.ac.jp. Your header should look
like this:

From: a-student@sk.tsukuba.ac.jp
To: data-hw@turnbull.sk.tsukuba.ac.jp
Subject: Basic Data Analysis HW#9

The subject should be all half-width Roman letters (ASCII).
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Factor analysis of artificial data

1. Reproduce the factor analysis of six artificial variables done in
class using your preferred statistical package.
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Factor analysis of real data

2. Using the same data as in the regression problems, conduct a
factor analysis on one factor, two factors, etc., until you have
“enough” factors.

3. Explain how you know when you have enough. Be quantitative!
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